Stock Portfolio Organizer
The ultimate porfolio management solution.
Shares, Margin, CFD's, Futures and Forex
EOD and Realtime
Dividends and Trust Distributions
And Much More ....
WiseTrader Toolbox
#1 Selling Amibroker Plugin featuring:
Advanced Adaptive Indicators
Advanced Pattern Exploration
Neural Networks
And Much More ....
Test1 for Amibroker (AFL)
Copy & Paste Friendly
Back
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | _SECTION_BEGIN ( "Saman ANN-BP Amibroker Predict" ); WT_TEPIX_RateOfChange = ROC (TEPIX, 1); input0 = Ref (WT_TEPIX_RateOfChange, 0); AddNeuralNetworkInput(input0, 0); input1 = Ref (SAM, 0); AddNeuralNetworkInput(input1, 0); input2 = Ref (SAM, -1); AddNeuralNetworkInput(input2, 0); BBUP= BBandTop ( Close ,14,2); WT_BBUP_RateOfChange = ROC (BBUP, 1); input3 = Ref (WT_BBUP_RateOfChange, 0); AddNeuralNetworkInput(input3, 0); input4 = Ref (WT_BBUP_RateOfChange, -1); AddNeuralNetworkInput(input4, 0); BBDN= BBandBot ( Close ,14,2); WT_BBDN_RateOfChange = ROC (BBDN, 1); input5 = Ref (WT_BBDN_RateOfChange, 0); AddNeuralNetworkInput(input5, 0); input6 = Ref (WT_BBDN_RateOfChange, -1); AddNeuralNetworkInput(input6, 0); RSI14 = RSI (14); input7 = Ref (RSI14, 0); AddNeuralNetworkInput(input7, 0); input8 = Ref (RSI14, -1); AddNeuralNetworkInput(input8, 0); MACD1226 = MACD (12, 26); WT_MACD1226_RateOfChange = ROC (MACD1226, 1); input9 = Ref (WT_MACD1226_RateOfChange, 0); AddNeuralNetworkInput(input9, 0); input10 = Ref (WT_MACD1226_RateOfChange, -1); AddNeuralNetworkInput(input10, 0); ADX14 = ADX (14); WT_ADX14_RateOfChange = ROC (ADX14, 1); input11 = Ref (WT_ADX14_RateOfChange, 0); AddNeuralNetworkInput(input11, 0); input12 = Ref (WT_ADX14_RateOfChange, -1); AddNeuralNetworkInput(input12, 0); CCI14 = CCI (14); input13 = Ref (CCI14, 0); AddNeuralNetworkInput(input13, 0); input14 = Ref (CCI14, -1); AddNeuralNetworkInput(input14, 0); StochasticD = StochD (14, 3, 3); input15 = Ref (StochasticD, 0); AddNeuralNetworkInput(input15, 0); input16 = Ref (StochasticD, -1); AddNeuralNetworkInput(input16, 0); EMA10= EMA ( C , 10); WT_EMA10_RateOfChange = ROC (EMA10, 1); input17 = Ref (WT_EMA10_RateOfChange, 0); AddNeuralNetworkInput(input17, 0); input18 = Ref (WT_EMA10_RateOfChange, -1); AddNeuralNetworkInput(input18, 0); SMA20= MA ( C , 20); WT_SMA20_RateOfChange = ROC (SMA20, 1); input19 = Ref (WT_SMA20_RateOfChange, 0); AddNeuralNetworkInput(input19, 0); input20 = Ref (WT_SMA20_RateOfChange, -1); AddNeuralNetworkInput(input20, 0); MYBBUP=BBup; WT_MYBBUP_RateOfChange = ROC (MYBBUP, 1); input21 = Ref (WT_MYBBUP_RateOfChange, 0); AddNeuralNetworkInput(input21, 0); input22 = Ref (WT_MYBBUP_RateOfChange, -1); AddNeuralNetworkInput(input22, 0); MYBBMID=BB_Mid; WT_MYBBMID_RateOfChange = ROC (MYBBMID, 1); input23 = Ref (WT_MYBBMID_RateOfChange, 0); AddNeuralNetworkInput(input23, 0); input24 = Ref (WT_MYBBMID_RateOfChange, -1); AddNeuralNetworkInput(input24, 0); MYBBDN=BBdn; WT_MYBBDN_RateOfChange = ROC (MYBBDN, 1); input25 = Ref (WT_MYBBDN_RateOfChange, 0); AddNeuralNetworkInput(input25, 0); input26 = Ref (WT_MYBBDN_RateOfChange, -1); AddNeuralNetworkInput(input26, 0); WT_TenkanSen_RateOfChange = ROC (TenkanSen, 1); input27 = Ref (WT_TenkanSen_RateOfChange, 0); AddNeuralNetworkInput(input27, 0); input28 = Ref (WT_TenkanSen_RateOfChange, -1); AddNeuralNetworkInput(input28, 0); WT_KijunSen_RateOfChange = ROC (KijunSen, 1); input29 = Ref (WT_KijunSen_RateOfChange, 0); AddNeuralNetworkInput(input29, 0); input30 = Ref (WT_KijunSen_RateOfChange, -1); AddNeuralNetworkInput(input30, 0); WT_Amitenkansen_RateOfChange = ROC (Amitenkansen, 1); input31 = Ref (WT_Amitenkansen_RateOfChange, 0); AddNeuralNetworkInput(input31, 0); input32 = Ref (WT_Amitenkansen_RateOfChange, -1); AddNeuralNetworkInput(input32, 0); WT_Amikijunsen_RateOfChange = ROC (Amikijunsen, 1); input33 = Ref (WT_Amikijunsen_RateOfChange, 0); AddNeuralNetworkInput(input33, 0); input34 = Ref (WT_Amikijunsen_RateOfChange, -1); AddNeuralNetworkInput(input34, 0); ROC1= ROC ( Close ,1); WT_ROC1_RateOfChange = ROC (ROC1, 1); input35 = Ref (WT_ROC1_RateOfChange, 0); AddNeuralNetworkInput(input35, 0); RunMultiInputNeuralNetwork( "FirstIndex0Close0others1.net" ); Plot (output0, _DEFAULT_NAME (), ParamColor ( "output0 Color" , colorRed ), styleLine ); EnableProgress(); RestoreDefaults(); ClearNeuralNetworkInputs(); _SECTION_END (); |