Stock Portfolio Organizer
The ultimate porfolio management solution.
Shares, Margin, CFD's, Futures and Forex
EOD and Realtime
Dividends and Trust Distributions
And Much More ....
WiseTrader Toolbox
#1 Selling Amibroker Plugin featuring:
Advanced Adaptive Indicators
Advanced Pattern Exploration
Neural Networks
And Much More ....
Test5 for Amibroker (AFL)
Copy & Paste Friendly
Back
_SECTION_BEGIN("SamanBahrampour-Ann-BB-Amibroker.Formula"); WT_TEPIX_RateOfChange = ROC(TEPIX, 1); input0 = Ref(WT_TEPIX_RateOfChange, 0); AddNeuralNetworkInput(input0, 0); input1 = Ref(SAM, 0); AddNeuralNetworkInput(input1, 0); input2 = Ref(SAM, -1); AddNeuralNetworkInput(input2, 0); BBUP=BBANDTOP(close,14,2); WT_BBUP_RateOfChange = ROC(BBUP, 1); input3 = Ref(WT_BBUP_RateOfChange, 0); AddNeuralNetworkInput(input3, 0); input4 = Ref(WT_BBUP_RateOfChange, -1); AddNeuralNetworkInput(input4, 0); BBDN=BBANDBOT(close,14,2); WT_BBDN_RateOfChange = ROC(BBDN, 1); input5 = Ref(WT_BBDN_RateOfChange, 0); AddNeuralNetworkInput(input5, 0); input6 = Ref(WT_BBDN_RateOfChange, -1); AddNeuralNetworkInput(input6, 0); RSI14 = RSI(14); input7 = Ref(RSI14, 0); AddNeuralNetworkInput(input7, 0); input8 = Ref(RSI14, -1); AddNeuralNetworkInput(input8, 0); MACD1226 = MACD(12, 26); WT_MACD1226_RateOfChange = ROC(MACD1226, 1); input9 = Ref(WT_MACD1226_RateOfChange, 0); AddNeuralNetworkInput(input9, 0); input10 = Ref(WT_MACD1226_RateOfChange, -1); AddNeuralNetworkInput(input10, 0); ADX14 = ADX(14); WT_ADX14_RateOfChange = ROC(ADX14, 1); input11 = Ref(WT_ADX14_RateOfChange, 0); AddNeuralNetworkInput(input11, 0); input12 = Ref(WT_ADX14_RateOfChange, -1); AddNeuralNetworkInput(input12, 0); CCI14 = CCI(14); input13 = Ref(CCI14, 0); AddNeuralNetworkInput(input13, 0); input14 = Ref(CCI14, -1); AddNeuralNetworkInput(input14, 0); StochasticD = StochD(14, 3, 3); input15 = Ref(StochasticD, 0); AddNeuralNetworkInput(input15, 0); input16 = Ref(StochasticD, -1); AddNeuralNetworkInput(input16, 0); EMA10= EMA(C, 10); WT_EMA10_RateOfChange = ROC(EMA10, 1); input17 = Ref(WT_EMA10_RateOfChange, 0); AddNeuralNetworkInput(input17, 0); input18 = Ref(WT_EMA10_RateOfChange, -1); AddNeuralNetworkInput(input18, 0); SMA20=MA(C, 20); WT_SMA20_RateOfChange = ROC(SMA20, 1); input19 = Ref(WT_SMA20_RateOfChange, 0); AddNeuralNetworkInput(input19, 0); input20 = Ref(WT_SMA20_RateOfChange, -1); AddNeuralNetworkInput(input20, 0); MYBBUP=BBup; WT_MYBBUP_RateOfChange = ROC(MYBBUP, 1); input21 = Ref(WT_MYBBUP_RateOfChange, 0); AddNeuralNetworkInput(input21, 0); input22 = Ref(WT_MYBBUP_RateOfChange, -1); AddNeuralNetworkInput(input22, 0); MYBBMID=BB_Mid; WT_MYBBMID_RateOfChange = ROC(MYBBMID, 1); input23 = Ref(WT_MYBBMID_RateOfChange, 0); AddNeuralNetworkInput(input23, 0); input24 = Ref(WT_MYBBMID_RateOfChange, -1); AddNeuralNetworkInput(input24, 0); MYBBDN=BBdn; WT_MYBBDN_RateOfChange = ROC(MYBBDN, 1); input25 = Ref(WT_MYBBDN_RateOfChange, 0); AddNeuralNetworkInput(input25, 0); input26 = Ref(WT_MYBBDN_RateOfChange, -1); AddNeuralNetworkInput(input26, 0); WT_TenkanSen_RateOfChange = ROC(TenkanSen, 1); input27 = Ref(WT_TenkanSen_RateOfChange, 0); AddNeuralNetworkInput(input27, 0); input28 = Ref(WT_TenkanSen_RateOfChange, -1); AddNeuralNetworkInput(input28, 0); WT_KijunSen_RateOfChange = ROC(KijunSen, 1); input29 = Ref(WT_KijunSen_RateOfChange, 0); AddNeuralNetworkInput(input29, 0); input30 = Ref(WT_KijunSen_RateOfChange, -1); AddNeuralNetworkInput(input30, 0); WT_Amitenkansen_RateOfChange = ROC(Amitenkansen, 1); input31 = Ref(WT_Amitenkansen_RateOfChange, 0); AddNeuralNetworkInput(input31, 0); input32 = Ref(WT_Amitenkansen_RateOfChange, -1); AddNeuralNetworkInput(input32, 0); WT_Amikijunsen_RateOfChange = ROC(Amikijunsen, 1); input33 = Ref(WT_Amikijunsen_RateOfChange, 0); AddNeuralNetworkInput(input33, 0); input34 = Ref(WT_Amikijunsen_RateOfChange, -1); AddNeuralNetworkInput(input34, 0); ROC1=roc(close,1); WT_ROC1_RateOfChange = ROC(ROC1, 1); input35 = Ref(WT_ROC1_RateOfChange, 0); AddNeuralNetworkInput(input35, 0); RunMultiInputNeuralNetwork("SamanBahrampour-Ann-BB-Amibroker.Formula.net"); Plot(output0, _DEFAULT_NAME(), ParamColor("output0 Color", colorRed), styleLine); EnableProgress(); RestoreDefaults(); ClearNeuralNetworkInputs(); _SECTION_END();