Stock Portfolio Organizer

The ultimate porfolio management solution.

Shares, Margin, CFD's, Futures and Forex
EOD and Realtime
Dividends and Trust Distributions
And Much More ....
For Portfolio Manager Click Here

WiseTrader Toolbox

#1 Selling Amibroker Plugin featuring:

Advanced Adaptive Indicators
Advanced Pattern Exploration
Neural Networks
And Much More ....
Find Out More Here

VBS Function for Gaussian Elimination for Amibroker (AFL)

Copy & Paste Friendly
_SECTION_BEGIN("VBS Function for Gaussian Elimination");
// *********************************************************
// *
// * VBS Function for Gaussian Elimination
// *
// *     Called by PolyFit ( AFL )
// *
// *********************************************************

EnableScript("VBScript");

<%
function Gaussian_Elimination (GE_Order, GE_N, GE_SumXn, GE_SumYXn)
    Dim b(10, 10)
    Dim w(10)
    Dim Coeff(10)

    for i = 1 To 10
        Coeff(i) = 0
    next

    n = GE_Order + 1

    for i = 1 to n
        for j = 1 to  n
            if i = 1 AND j = 1 then
                b(i, j) = cDBL(GE_N)
            else
                b(i, j) = cDbl(GE_SumXn(i + j - 2))
            end if
        next      
        w(i) = cDbl(GE_SumYXn(i))
    next

    n1 = n - 1
    for i = 1 to n1
        big = cDbl(abs(b(i, i)))
        q = i
        i1 = i + 1

        for j = i1 to n
            ab = cDbl(abs(b(j, i)))
            if (ab >= big) then
                big = ab
                q = j
            end if
        next

        if (big <> 0.0) then
            if (q <> i) then
                for j = 1 to n
                    Temp = cDbl(b(q, j))
                    b(q, j) = b(i, j)
                    b(i, j) = Temp
                next
                Temp = w(i)
                w(i) = w(q)
                w(q) = Temp
            end if
        end if

        for j = i1 to n
            t = cDbl(b(j, i) / b(i, i))
            for k = i1 to n
                b(j, k) = b(j, k) - t * b(i, k)
            next         
            w(j) = w(j) - t * w(i)
        next      
    next

    if (b(n, n) <> 0.0) then

        Coeff(n) = w(n) / b(n, n)
        i = n - 1

        while i > 0
            SumY = cDbl(0)
            i1 = i + 1
            for j = i1 to n
                SumY = SumY + b(i, j) * Coeff(j)
            next
            Coeff(i) = (w(i) - SumY) / b(i, i)
            i = i - 1
        wend   

        Gaussian_Elimination = Coeff

    end if
end function
%>

// *********************************************************
// *
// * AFL Function for nth Order Polynomial Fit
// *     Calls Gaussian_Elimination ( VBS )
// *
// *     Y      = The array to Fit 
// *     BegBar = Beg Bar in range to fit
// *     EndBar = End Bar in range to fit
// *     Order  = 1 - 8 = Order of Poly Fit (Integer)
// *     ExtraB = Number of Bars to Extrapolate (Backward)
// *     ExtraF = Number of Bars to Extrapolate (Forward)
// *
// *********************************************************
 
function PolyFit(GE_Y, GE_BegBar, GE_EndBar, GE_Order, GE_ExtraB, GE_ExtraF)
{
    BI        = BarIndex();

    GE_N      = GE_EndBar - GE_BegBar + 1;
    GE_XBegin = -(GE_N - 1) / 2;
    GE_X      = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar)));

    GE_X_Max  = LastValue(Highest(GE_X));

    GE_X      = GE_X / GE_X_Max;

    X1 = GE_X;
    AddColumn(X1, "X1", 1.9);

    GE_Y      = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, GE_Y));

    GE_SumXn  = Cum(0);
                                 GE_SumXn[1]   = LastValue(Cum(GE_X)); 
    GE_X2     = GE_X * GE_X;     GE_SumXn[2]   = LastValue(Cum(GE_X2));
    GE_X3     = GE_X * GE_X2;    GE_SumXn[3]   = LastValue(Cum(GE_X3)); 
    GE_X4     = GE_X * GE_X3;    GE_SumXn[4]   = LastValue(Cum(GE_X4)); 
    GE_X5     = GE_X * GE_X4;    GE_SumXn[5]   = LastValue(Cum(GE_X5)); 
    GE_X6     = GE_X * GE_X5;    GE_SumXn[6]   = LastValue(Cum(GE_X6)); 
    GE_X7     = GE_X * GE_X6;    GE_SumXn[7]   = LastValue(Cum(GE_X7)); 
    GE_X8     = GE_X * GE_X7;    GE_SumXn[8]   = LastValue(Cum(GE_X8)); 
    GE_X9     = GE_X * GE_X8;    GE_SumXn[9]   = LastValue(Cum(GE_X9)); 
    GE_X10    = GE_X * GE_X9;    GE_SumXn[10]  = LastValue(Cum(GE_X10)); 
    GE_X11    = GE_X * GE_X10;   GE_SumXn[11]  = LastValue(Cum(GE_X11)); 
    GE_X12    = GE_X * GE_X11;   GE_SumXn[12]  = LastValue(Cum(GE_X12)); 
    GE_X13    = GE_X * GE_X12;   GE_SumXn[13]  = LastValue(Cum(GE_X13)); 
    GE_X14    = GE_X * GE_X13;   GE_SumXn[14]  = LastValue(Cum(GE_X14)); 
    GE_X15    = GE_X * GE_X14;   GE_SumXn[15]  = LastValue(Cum(GE_X15)); 
    GE_X16    = GE_X * GE_X15;   GE_SumXn[16]  = LastValue(Cum(GE_X16)); 

    GE_SumYXn = Cum(0);
                                 GE_SumYXn[1]  = LastValue(Cum(GE_Y));
    GE_YX     = GE_Y    * GE_X;  GE_SumYXn[2]  = LastValue(Cum(GE_YX));
    GE_YX2    = GE_YX   * GE_X;  GE_SumYXn[3]  = LastValue(Cum(GE_YX2)); 
    GE_YX3    = GE_YX2  * GE_X;  GE_SumYXn[4]  = LastValue(Cum(GE_YX3));
    GE_YX4    = GE_YX3  * GE_X;  GE_SumYXn[5]  = LastValue(Cum(GE_YX4));
    GE_YX5    = GE_YX4  * GE_X;  GE_SumYXn[6]  = LastValue(Cum(GE_YX5));
    GE_YX6    = GE_YX5  * GE_X;  GE_SumYXn[7]  = LastValue(Cum(GE_YX6));
    GE_YX7    = GE_YX6  * GE_X;  GE_SumYXn[8]  = LastValue(Cum(GE_YX7));
    GE_YX8    = GE_YX7  * GE_X;  GE_SumYXn[9]  = LastValue(Cum(GE_YX8));

    GE_Coeff  = Cum(0);

    GE_VBS    = GetScriptObject();
    GE_Coeff  = GE_VBS.Gaussian_Elimination(GE_Order, GE_N, GE_SumXn, GE_SumYXn);

    for (i = 1; i <= GE_Order + 1; i++)
        printf(NumToStr(i, 1.0) + " = " + NumToStr(GE_Coeff[i], 1.9) + "\n");

    GE_X   = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar + GE_ExtraF) / GE_X_Max));

    GE_X2  = GE_X   * GE_X; GE_X3  = GE_X2  * GE_X; GE_X4  = GE_X3  * GE_X; GE_X5  = GE_X4  * GE_X; GE_X6  = GE_X5  * GE_X;
    GE_X7  = GE_X6  * GE_X; GE_X8  = GE_X7  * GE_X; GE_X9  = GE_X8  * GE_X; GE_X10 = GE_X9  * GE_X; GE_X11 = GE_X10 * GE_X; 
    GE_X12 = GE_X11 * GE_X; GE_X13 = GE_X12 * GE_X; GE_X14 = GE_X13 * GE_X; GE_X15 = GE_X14 * GE_X; GE_X16 = GE_X15 * GE_X; 

    GE_Yn = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, -1e10, IIf(BI > GE_EndBar, -1e10, 
            GE_Coeff[1]  + 
            GE_Coeff[2]  * GE_X   + GE_Coeff[3]  * GE_X2  + GE_Coeff[4]  * GE_X3  + GE_Coeff[5]  * GE_X4  + GE_Coeff[6]  * GE_X5  +
            GE_Coeff[7]  * GE_X6  + GE_Coeff[8]  * GE_X7  + GE_Coeff[9]  * GE_X8));

    return GE_Yn;
}

// *********************************************************
// *
// * Demo AFL to use PolyFit
// *
// *********************************************************

Filter = 1;

BI        = BarIndex();
PF_BegBar = BeginValue(BI);
PF_EndBar = EndValue(BI);
PF_Y      = (H + L) / 2;
PF_Order  = Param("nth Order",             3, 1,  8, 1);
PF_ExtraB = Param("Extrapolate Backwards", 0, 0, 50, 1);
PF_ExtraF = Param("Extrapolate Forwards",  0, 0, 50, 1);

Yn = PolyFit(PF_Y, PF_BegBar, PF_EndBar, PF_Order, PF_ExtraB, PF_ExtraF);

GraphXSpace = 10;

Plot(Yn, "nth Order Polynomial Fit - " + NumToStr(PF_Order, 1.0), IIf(BI > PF_EndBar - PF_ExtraF, colorWhite, IIf(BI < PF_BegBar - PF_ExtraF, colorWhite, colorBrightGreen)), styleThick, Null, Null, PF_ExtraF);
PlotOHLC(O, H, L, C, "Close", colorLightGrey, styleCandle);

_SECTION_END();
Back