Stock Portfolio Organizer
The ultimate porfolio management solution.
WiseTrader Toolbox
#1 Selling Amibroker Plugin featuring:
AR Prediction for Amibroker (AFL)
Auto Regression Prediction using many different methods.
Author: tom_borgo [at] hotmail.com
Screenshots
Indicator / Formula
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | _SECTION_BEGIN ( "AR_Prediction.afl" ); // AR MODELING (Burg and Yule-Walker method are implemented) // // Main features : // // - Prediction : calculate future datas based on past data, past volume and // past low/high // // - Spectral analysis : compute sharp and clean spectrum of the data and plot // it in Decibels // // - Find up to 10 or more dominant cycles from the data // //------------------------------------------------------------------------------ // ****************************************************************************************** // * // * AR MODELING (Burg and Yule-Walker method are implemented) // * // * // * Main features : // * - Prediction : calculate future datas based on past data, past volume and past low/high // * - Spectral analysis : compute sharp and clean spectrum of the data and plot it in Decibels // * - Find up to 10 or more dominant cycles from the data // * // * // * Native AFL for maximum speed without needed external dll // * Many criterions for auto order selection : FPE, AIC, MDL, CAT, CIC ... // * + 2 optionnal VBS Scripts (one for experimentation about rounding, the other for PolyFit detrending) // * // * // * Use and modify it freely. v0.04, tomy_frenchy, tom_borgo@hotmail.com, mich. 11/2006. // * Thanks to Fred for PolyFit function AFL and Gaussian Elimination VBS // * // ****************************************************************************************** // ****************************************************************************************** // * // * DESCRITION // * // * AR_Prediction.afl compute AR (Auto-Regressive) model from the data. // * Burg method is called too Maximum Likelihood, Maximum Entropy Method (MEM), // * Maximum Entropy Spectral Analysis (MESA). All are the same. // * Yule-Walker method is based on the Autocorellation of the data and by minimising // * the Least Square error between model and data. // * // * Purpose of AR modeling are to obtain a simple model to describe data. // * From this model we can for two main application : // * - Calculate future data (make prediction). It is possible because the model is // * described by a mathematical expression. // * - Make spectral analysis to exctract main cycle from the data. Spectral Analysis is // * more powerfull this way than classic FFT for short horizon data and for spectrum wich // * have sharp frequency (cyclic signal) // * // * // * MAIN FUNCTION : // * 1- AR_Burg: to compute AR Burg model // * 2- AR_YuleWalker: to compute AR Yule Walker model // * 3- AR_Predict: to predict future data based on the computed AR model // * 4- AR_Freq: to compute the spectrum from the computed AR model // * 5- AR_Sin: to find main frequency in the computed spectrum (dominant cycles from the data) // * // * // * ALL THE CODE IS COMMENTED SO YOU CAN FIND PARAMETERS FOR THE FUNCTION IN THE DEMO SECTION AT THE END OF THE FILE. // * All the source is commented, so you can learn a lot from it. // * There are many sources paper on the net about the subject. // * // * // ****************************************************************************************** // ****************************************************************************************** // * // * PARAMETERS // * // * // * // * Main parameters for AR modeling : // * // * // * Price field = Data to predict // * AR Model = Burg model or Yule-Yalker model // * Length to look back = Horizon used on the data to compute the model // * Order AR = Order wanted for the AR model // * Number of bar to predict = Length prediction // * Auto AR order = Find automatically the best order // * Auto AR criterion = Criterion to use for Auto AR order // * FPE: Final Prediction Error (classic old one) // * AIC: Akaine Information Criterion (classic less old one) // * MDL: Minimum Description Length // * CAT: Criterion Autoregressive Transfer // * CIC: Combined Information Criterion (good one) // * Mixed: An upper averaging from all those criterion (best, recommended) // * Burg: Hamming Window = If Hamming Window is applyed during model computation (only Burg model) // * Burg: Double Precision = If Double Precision is used to compute the model (only Burg model) // * Y-W: Biased = If Autocorrelation estimator should be biased (Yes) or not-biased (No) (only Yule-Walker model) // * // * // * // * Pre-Processing begore modeling AR model : // * // * // * Intraday EOD GAP Filter = For intraday data, first data of the day is same than last data of yesterday day // * // * // * Periods T3 = Periods for Tillson's T3 filter (high order low pass denoiser) // * Slope T3 = Slope for Tillson's T3 filter (0.7 to 0.83 for usual value) (Higher value mean more dynamic filter) // * // * // * Detrending method = Method to use to detrend the data // * None: no detrending is done // * Log10: log10(data) detrending is done (usefull for trend wich increase with time) // * Derivation: differentiation one by one from the data (prefered method because is sure to kill the linear trend) // * Linear Regression: substract linear regression from the data (good method too if fitting is ok) // * PolyFit: substract n-th order polynomial regression from the data (order 3 can give nice result) // * PolyFit Order = Order for the PolyFit detrending method (usefull just if you choose this method of detrending) // * // * // * Center data = Remove the bias in the data (substract the mean). // * AR modeling NEED NOT BIASED data, so this sould be always left on "Yes". // * // * // * Normalize = Scale data between [-1;1] (usefull for better computation because less rounding error) // * // * // * Volume HL weight on data = Multiply data by a factor computed from volume and high/low information from the data // * !!! This is experimental feature !!! // * Strength Volume = Strength of volume weighting // * Strength Fractal = Strength of High/Low (Fractal) weighting // * Periods Fract (even) = Periods to compute the fractal factor (an even period is needed) // * Scale Final Weights = Final dynamic of the weights (high value increase difference between low weight and high weight) // * Translate Final Weights = Final strength of the weights (high value bring all the weights near their maximum) // * Scale / Translate is based on Inverse Fisher Transform and work like a limiter/compressor of the weights // * // * // * Time weight on data = Apply time windowing on data so more recent data are more weighted than old data to compute the AR model // * Weighting Time Window = Choose the strength of the weights // * Log: natural logarithm, small time weigthing on the data // * Ramp: a ramp, linear time weigthing on the data // * Exp: exponential, strong time weigthing on the data // * // * // * // * Post-Processing before plotting predicted data : // * // * Retrending method = Choose if trend should be added back to predicted data // * Trend is automatically added back for "Log10" and "Derivation" methods, // * so data stay in good scale // * // * Color PolyFit = Color to plot the curve from "PolyFit" detrending method // * Color PolyFit = Color to plot the line from "Linear Regression" detrending method // * // * // ****************************************************************************************** EnableScript ( "VBScript" ); <% ' Called by ARG_Burg AFL funct. to compute Ki in Double Precision function Compute_KI(f, b, W, i, LongBar) n = LongBar - 1 for j = i to n Num = Num + cDBL(W(j))*( cDBL(f(j))*cDBL(b(j-1)) ) Den = Den + cDBL(W(j))*( cDBL(f(j))^2 + cDBL(b(j-1))^2 ) next KI = 2*Num/Den Compute_KI = KI end function function Gaussian_Elimination (GE_Order, GE_N, GE_SumXn, GE_SumYXn) Dim b(10, 10) Dim w(10) Dim Coeff(10) for i = 1 To 10 Coeff(i) = 0 next n = GE_Order + 1 for i = 1 to n for j = 1 to n if i = 1 AND j = 1 then b(i, j) = cDBL(GE_N) else b(i, j) = cDbl(GE_SumXn(i + j - 2)) end if next w(i) = cDbl(GE_SumYXn(i)) next n1 = n - 1 for i = 1 to n1 big = cDbl(abs(b(i, i))) q = i i1 = i + 1 for j = i1 to n ab = cDbl(abs(b(j, i))) if (ab >= big) then big = ab q = j end if next if (big <> 0.0) then if (q <> i) then for j = 1 to n Temp = cDbl(b(q, j)) b(q, j) = b(i, j) b(i, j) = Temp next Temp = w(i) w(i) = w(q) w(q) = Temp end if end if for j = i1 to n t = cDbl(b(j, i) / b(i, i)) for k = i1 to n b(j, k) = b(j, k) - t * b(i, k) next w(j) = w(j) - t * w(i) next next if (b(n, n) <> 0.0) then Coeff(n) = w(n) / b(n, n) i = n - 1 while i > 0 SumY = cDbl(0) i1 = i + 1 for j = i1 to n SumY = SumY + b(i, j) * Coeff(j) next Coeff(i) = (w(i) - SumY) / b(i, i) i = i - 1 wend Gaussian_Elimination = Coeff end if end function %> function PolyFit(GE_Y, GE_BegBar, GE_EndBar, GE_Order, GE_ExtraB, GE_ExtraF) { BI = BarIndex(); GE_N = GE_EndBar - GE_BegBar + 1; GE_XBegin = -(GE_N - 1) / 2; GE_X = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar))); GE_X_Max = LastValue(Highest(GE_X)); GE_X = GE_X / GE_X_Max; X1 = GE_X; GE_Y = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, GE_Y)); GE_SumXn = Cum(0); GE_SumXn[1] = LastValue(Cum(GE_X)); GE_X2 = GE_X * GE_X; GE_SumXn[2] = LastValue(Cum(GE_X2)); GE_X3 = GE_X * GE_X2; GE_SumXn[3] = LastValue(Cum(GE_X3)); GE_X4 = GE_X * GE_X3; GE_SumXn[4] = LastValue(Cum(GE_X4)); GE_X5 = GE_X * GE_X4; GE_SumXn[5] = LastValue(Cum(GE_X5)); GE_X6 = GE_X * GE_X5; GE_SumXn[6] = LastValue(Cum(GE_X6)); GE_X7 = GE_X * GE_X6; GE_SumXn[7] = LastValue(Cum(GE_X7)); GE_X8 = GE_X * GE_X7; GE_SumXn[8] = LastValue(Cum(GE_X8)); GE_X9 = GE_X * GE_X8; GE_SumXn[9] = LastValue(Cum(GE_X9)); GE_X10 = GE_X * GE_X9; GE_SumXn[10] = LastValue(Cum(GE_X10)); GE_X11 = GE_X * GE_X10; GE_SumXn[11] = LastValue(Cum(GE_X11)); GE_X12 = GE_X * GE_X11; GE_SumXn[12] = LastValue(Cum(GE_X12)); GE_X13 = GE_X * GE_X12; GE_SumXn[13] = LastValue(Cum(GE_X13)); GE_X14 = GE_X * GE_X13; GE_SumXn[14] = LastValue(Cum(GE_X14)); GE_X15 = GE_X * GE_X14; GE_SumXn[15] = LastValue(Cum(GE_X15)); GE_X16 = GE_X * GE_X15; GE_SumXn[16] = LastValue(Cum(GE_X16)); GE_SumYXn = Cum(0); GE_SumYXn[1] = LastValue(Cum(GE_Y)); GE_YX = GE_Y * GE_X; GE_SumYXn[2] = LastValue(Cum(GE_YX)); GE_YX2 = GE_YX * GE_X; GE_SumYXn[3] = LastValue(Cum(GE_YX2)); GE_YX3 = GE_YX2 * GE_X; GE_SumYXn[4] = LastValue(Cum(GE_YX3)); GE_YX4 = GE_YX3 * GE_X; GE_SumYXn[5] = LastValue(Cum(GE_YX4)); GE_YX5 = GE_YX4 * GE_X; GE_SumYXn[6] = LastValue(Cum(GE_YX5)); GE_YX6 = GE_YX5 * GE_X; GE_SumYXn[7] = LastValue(Cum(GE_YX6)); GE_YX7 = GE_YX6 * GE_X; GE_SumYXn[8] = LastValue(Cum(GE_YX7)); GE_YX8 = GE_YX7 * GE_X; GE_SumYXn[9] = LastValue(Cum(GE_YX8)); GE_Coeff = Cum(0); GE_VBS = GetScriptObject(); GE_Coeff = GE_VBS.Gaussian_Elimination(GE_Order, GE_N, GE_SumXn, GE_SumYXn); for (i = 1; i <= GE_Order + 1; i++) printf(NumToStr(i, 1.0) + " = " + NumToStr(GE_Coeff[i], 1.9) + "\n"); GE_X = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar + GE_ExtraF) / GE_X_Max)); GE_X2 = GE_X * GE_X; GE_X3 = GE_X2 * GE_X; GE_X4 = GE_X3 * GE_X; GE_X5 = GE_X4 * GE_X; GE_X6 = GE_X5 * GE_X; GE_X7 = GE_X6 * GE_X; GE_X8 = GE_X7 * GE_X; GE_X9 = GE_X8 * GE_X; GE_X10 = GE_X9 * GE_X; GE_X11 = GE_X10 * GE_X; GE_X12 = GE_X11 * GE_X; GE_X13 = GE_X12 * GE_X; GE_X14 = GE_X13 * GE_X; GE_X15 = GE_X14 * GE_X; GE_X16 = GE_X15 * GE_X; GE_Yn = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, -1e10, IIf(BI > GE_EndBar, -1e10, GE_Coeff[1] + GE_Coeff[2] * GE_X + GE_Coeff[3] * GE_X2 + GE_Coeff[4] * GE_X3 + GE_Coeff[5] * GE_X4 + GE_Coeff[6] * GE_X5 + GE_Coeff[7] * GE_X6 + GE_Coeff[8] * GE_X7 + GE_Coeff[9] * GE_X8)); return GE_Yn; } function Time_weighting(data, window, BegBar, EndBar) { BI = BarIndex(); if (window == "Log") alphatime = log(Cum(1)); if (window == "Ramp") alphatime = Cum(1); if (window == "Exp") alphatime = exp(Cum(0.01)); alphatime = Ref(alphatime, -BegBar); alphatime = alphatime - alphatime[BegBar]; alphatime = alphatime / alphatime[EndBar]; alphatime = IIf(BI < BegBar, 0, IIf(BI > EndBar, 0, alphatime)); return alphatime*data; } function Volume_HighLow_weighting(data, coef_vol, coefdim, period, scale, translation) { // Coefficient Volume highvol = V; highvol = HHV(Median(V, 5), 5000); nbr_vol = coef_vol*highvol/(1 - coef_vol) + 1; alpha_vol = V/nbr_vol; alpha_vol = IIf(alpha_vol > 0.99, 0.99, alpha_vol); alpha_vol = IIf(alpha_vol < 0.01, 0.01, alpha_vol); // Coefficient High/Low (Adpated from FRAMA from John Ehlers) coefdim = coefdim * 2 - 0.01; N = 2*floor(period/2); delta1 = HHV(Ref(High, -N/2), N/2) - LLV(Ref(Low, -N/2), N/2); delta2 = HHV(High, N/2) - LLV(Low, N/2); delta = HHV(High, N) - LLV(Low, N); Dimen = log((delta1 + delta2)/delta)/log(2); alphadim = exp(-coefdim*Dimen); alphadimnorm = Min(Max(alphadim, 0.01), 0.99); // Mix Volume and High/Low, and scale them with Inverse Fisher Tansform alpha = alphadimnorm + alpha_vol; data_av = scale*(alpha - translation); alpha = (exp(2*data_av) - 1)/(exp(2*data_av) + 1); alpha = Min(Max(alpha,0.01),0.99); return alpha*data; } function Filter_GAP_EOD(data) { time_frame = Minute() - Ref(Minute(), -1); time_frame = IIf(time_frame < 0, time_frame + 60, time_frame); time_frame = time_frame[1]; day_begin = 152900 + 100*time_frame; day_end = 215900; delta = 0; timequote = TimeNum(); for (i = 1; i < BarCount; i++) { if (timequote[i] == Day_begin) delta = data[i] - data[i-1]; data[i] = data[i] - delta; } return data; } function T3(data, periods, slope) { // High Order Low-Pass filter e1 = EMA(data, periods); e2 = EMA(e1, periods); e3 = EMA(e2, periods); e4 = EMA(e3, periods); e5 = EMA(e4, periods); e6 = EMA(e5, periods); c1 = -slope*slope*slope; c2 = 3*slope*slope + 3*slope*slope*slope; c3 = -6*slope*slope - 3*slope - 3*slope*slope*slope; c4 = 1 + 3*slope+slope*slope*slope + 3*slope*slope; result = c1*e6 + c2*e5 + c3*e4 + c4*e3; return result; } function f_centeredT3(data, periods, slope) { // Centered T3 Moving Average slide = floor(periods/2); centeredT3 = data; centeredT3 = Ref(T3(data,periods,slope),slide); centeredT3 = IIf( IsNan(centeredT3) OR !IsFinite(centeredT3) OR IsNull(centeredT3), data, centeredT3); return centeredT3; } function f_detrend(data, BegBar, EndBar, ExtraF, method_detrend, PF_order) { // Detrend data BI = BarIndex(); LongBar = EndBar - BegBar + 1 ; detrended[0] = 0; if (method_detrend == "Log10") detrended = log10(data); if (method_detrend == "Derivation") detrended = data - Ref(data, -1); if (method_detrend == "Linear Regression") { x = Cum(1); x = Ref(x,-1); x[0] = 0; x = Ref(x, -BegBar); a = LinRegSlope(data, LongBar); a = a[EndBar]; b = LinRegIntercept(data, LongBar); b = b[EndBar]; y = a*x + b; global detrending_parameters; detrending_parameters = y; y = IIf(BI < BegBar, -1e10, IIf(BI > EndBar + ExtraF, -1e10, y)); Plot( y, "Linear Regression", ParamColor( "Color Linear Regression", colorCycle ), ParamStyle("Style") ); detrended = data - y; } if (method_detrend == "PolyFit") { Yn = PolyFit(data, BegBar, EndBar, PF_order, 0, ExtraF); Yn = Ref(Yn, -ExtraF); global detrending_parameters; detrending_parameters = Yn; Yn = IIf(BI < BegBar, -1e10, IIf(BI > EndBar + ExtraF, -1e10, Yn)); Plot( Yn, "PolyFit", ParamColor( "Color PolyFit", colorCycle ), ParamStyle("Style") ); detrended = data - Yn; } return detrended; } function f_retrend(data, Value_BegBar, BegBar, EndBar, method_detrend) { BI = BarIndex(); retrended = -1e10; if (method_detrend == "Log10") { retrended = 10^(data); } if (method_detrend == "Derivation") { retrended[BegBar] = Value_BegBar; for (i = BegBar + 1; i < EndBar + 1; i++) retrended[i] = data[i] + retrended[i-1]; } if (method_detrend == "Linear Regression") { retrended = data + detrending_parameters; } if (method_detrend == "PolyFit") { retrended = data + detrending_parameters; } return retrended; } function durbinlevison(Autocorr, OrderAR, LongBar, AutoOrder, AutoOrder_Criterion) { // for Yule Walker method only // Initialization AR_Coeff = 0; alpha[1] = noise_variance[1] = Autocorr[0]; beta[1] = Autocorr[1]; k[1] = Autocorr[1] / Autocorr[0]; AR_Coeff[1] = k[1]; // Initialize recursive criterion for order AR selection if (AutoOrder == 1) { FPE = AIC = MDL = CAT = CIC = -1e10; CAT_factor = 0; CIC_product = (1 + 1/(LongBar + 1))/(1 - 1/(LongBar + 1)); CIC_add = 1 + 1/(LongBar + 1); } // Main iterative loop for (n = 1; n < OrderAR; n++) { // Compute last coefficient for (i = 1; i < n + 1; i++) AR_Coeff_inv[n+1-i] = AR_Coeff[i]; temp = 0; for (i = 1; i < n + 1; i++) temp = temp + Autocorr[i] * AR_Coeff_inv[i]; beta[n+1] = Autocorr[n+1] - temp; alpha[n+1] = alpha[n] * (1 - k[n]*k[n]); k[n+1] = beta[n+1] / alpha[n+1]; AR_Coeff[n+1] = k[n+1]; // Compute other coefficients by recursion for (i = 1; i < n + 1; i++) New_AR_Coeff[i] = AR_Coeff[i] - k[n+1] * AR_Coeff_inv[i]; New_AR_Coeff[n+1] = AR_Coeff[n+1]; // Update AR_Coeff = New_AR_Coeff; noise_variance[n+1] = alpha[n+1]; if (AutoOrder == 1) { i = n + 1; // Compute criterions for order AR selection FPE[i] = noise_variance[i]*(LongBar + (i + 1))/(LongBar - (i + 1)); // Final Prediction Error AIC[i] = log(noise_variance[i])+2*i/LongBar; // Akaine Information Criterion MDL[i] = log(noise_variance[i]) + i*log(LongBar)/LongBar; // Minimum Description Length CAT_factor = CAT_factor + (LongBar - i)/(LongBar*noise_variance[i]); CAT[i] = CAT_factor/LongBar - (LongBar - i)/(LongBar*noise_variance[i]); // Criterion Autoregressive Transfer CIC_product = CIC_product * (1 + 1/(LongBar + 1 - i))/(1 - 1/(LongBar + 1 - i)); CIC_add = CIC_add + (1 + 1/(LongBar + 1 - i)); CIC[i] = log(noise_variance[i]) + Max(CIC_product - 1,3*CIC_add); // Combined Information Criterion } // End main iterative loop } if (AutoOrder == 1) { // Clean data because of rounding number for very low or very high value, and discard small changes FPE = IIf(abs(LinRegSlope(FPE, 2)/FPE[1]) < 0.005 OR abs(FPE) > 1e7, -1e10, FPE); AIC = IIf(log(abs(LinRegSlope(AIC, 2)/AIC[1])) < 0.005 OR abs(AIC) > 1e7, -1e10, AIC); MDL = IIf(log(abs(LinRegSlope(MDL, 2)/MDL[1])) < 0.005 OR abs(MDL) > 1e7, -1e10, MDL); CAT = IIf(log(abs(LinRegSlope(CAT, 2)/CAT[1])) < 0.005 OR abs(CAT) > 1e7, -1e10, CAT); CIC = IIf(abs(LinRegSlope(CIC, 2)/CIC[1]) < 0.005 OR abs(CIC) > 1e7, -1e10, CIC); // Find lower value Mixed_Order = 0; FPE_Order = Mixed_Order[1] = LastValue(Max(ValueWhen(FPE == Lowest(FPE) AND IsFinite(FPE), Cum(1), 1) - 1, 2)); AIC_Order = Mixed_Order[2] = LastValue(Max(ValueWhen(AIC == Lowest(AIC) AND IsFinite(AIC), Cum(1), 1) - 1, 2)); MDL_Order = Mixed_Order[3] = LastValue(Max(ValueWhen(MDL == Lowest(MDL) AND IsFinite(MDL), Cum(1), 1) - 1, 2)); CAT_Order = Mixed_Order[4] = LastValue(Max(ValueWhen(CAT == Lowest(CAT) AND IsFinite(CAT), Cum(1), 1) - 1, 2)); CIC_Order = Mixed_Order[5] = LastValue(Max(ValueWhen(CIC == Lowest(CIC) AND IsFinite(CIC), Cum(1), 1) - 1, 2)); // Mixed array is an averaging from all criterions taking in consideration order choose by criterions is often too low Mixed_Order_array = Median(Mixed_Order, 5); Mixed_Order = 2*ceil(Mixed_Order_array[5]); // Print informations about best order for each criterion printf("\nFPE Order : "+FPE_Order); printf("\nAIC Order : "+AIC_Order); printf("\nMDL Order : "+MDL_Order); printf("\nCAT Order : "+CAT_Order); printf("\nCIC Order : "+CIC_Order); printf("\n*** Mixed Order *** : "+Mixed_Order); // Mark best order in a[1] wich is returned at the end of the function if (AutoOrder_Criterion == "FPE") AR_Coeff[1] = FPE_Order; if (AutoOrder_Criterion == "AIC") AR_Coeff[1] = AIC_Order; if (AutoOrder_Criterion == "MDL") AR_Coeff[1] = MDL_Order; if (AutoOrder_Criterion == "CAT") AR_Coeff[1] = CAT_Order; if (AutoOrder_Criterion == "CIC (good)") AR_Coeff[1] = CIC_Order; if (AutoOrder_Criterion == "Mixed (best)") AR_Coeff[1] = Mixed_Order; } AR_Coeff[0] = alpha[OrderAR]; // noise variance estimator return AR_Coeff; } function AR_YuleWalker(data, BegBar, EndBar, OrderAR, Biased, AutoOrder, AutoOrder_Criterion) { BI = BarIndex(); Data_all = data; Data = IIf(BI < BegBar, 0, IIf(BI > EndBar, 0, Data)); LongBar = EndBar - BegBar + 1; // Window Hamming to make it more stable for non-biased estimator if (Biased == 0) { pi = atan(1) * 4; x = Cum(1); x = Ref(x,-1); x[0] = 0; W = 0.54 - 0.46*cos(2*pi*x/(LongBar-1)); Wi = Ref(W,-BegBar); data = Wi*data; } // Compute Autocorrelation function for (i = 0; i < OrderAR + 1; i++) { temp = 0; for (j = BegBar; j < EndBar + 1 - i; j++) { temp = temp + data[j]*data[j+i]; } if (Biased == 1) Autocorr[i]=(1/(LongBar))*temp; // biased estomator (best, model is always stable), small variance but less power if (Biased == 0) Autocorr[i]=(1/(LongBar-i))*temp; // non-biased estimator (model can be unstable), large variance } Autocorr=Autocorr/Autocorr[0]; // normalization (don' t change result, to be less exposed to bad rounding) // Compute AR parameters with Durbin-Levison recursive algorithm for symmetric Toeplitz matrix (Hermitian matrix) AR_Coeff = durbinlevison(Autocorr, OrderAR, LongBar, AutoOrder, AutoOrder_Criterion); // End AR_Coeff = IIf (BI > OrderAR, -1e10, AR_Coeff); // usefull for AR_Pred and AR_Freq return AR_Coeff; // AR_Coeff[0] is noise variance estimator } function AR_Burg(data, BegBar, EndBar, OrderAR, Window, AutoOrder, AutoOrder_Criterion, DoublePrecision) { BI = BarIndex (); LongBar = EndBar - BegBar + 1; // LongBar = the number of data // Initialize recursive criterion for order AR selection if (AutoOrder == 1) { FPE = AIC = MDL = CAT = CIC = -1e10; CAT_factor = 0; CIC_product = (1 + 1/(LongBar + 1))/(1 - 1/(LongBar + 1)); CIC_add = 1 + 1/(LongBar + 1); } // Hamming window if selected if (Window == 1) { pi = atan (1) * 4; x = Cum (1); x = Ref (x,-1); x[0] = 0; W = 0.54 - 0.46* cos (2*pi*x/(LongBar-1)); } // Create data, forward and backward coefficients arrays y = Ref (data,BegBar); // y[0:LongBar-1] are the data y = IIf (BI < LongBar, y, 0); // to be sure not to compute future data f = b = y; // initialize forward and backward coefficients // Initialize noise variance estimate with data variance (= data autocorrelation[0]) noise_variance = Cum (y^2); noise_variance[0] = noise_variance[LongBar-1]/LongBar; // Main loop for (i = 1; i < OrderAR + 1; i++) { if (Window == 1) Wi = Ref (W,-i); // center Hamming Window else Wi = 1; b_shifted = Ref (b,-1); if (DoublePrecision == 0) { // single precision k_temp = Sum (Wi*f*b_shifted, LongBar - i)/ Sum (Wi*(f^2 + b_shifted^2), LongBar - i); k[i] = 2*k_temp[LongBar - 1]; // k is reflection coefficient computed from i to LongBar - 1, like Burg tell it (!!! on Numerical Recipes it is computed from 1 to LongBar - i !!!) } /* -------------------------------------------------------------------------------------------------------------------------------------------- */ /* --- PART JUST BELOW ARE ONLY FOR EXPERIMENTATION ABOUT ROUNDING PROBLEM, COMPUTATION IS SLOWER AND THIS IS NOT NEEDED FOR SMALL AR ORDER --- */ // Use for FOR loop instead SUM function give different result (neither good, neither bad, but just different) because of rounding single-precision in AFL. De-comment this part to use FOR loop. /* Num = 0;Den = 0; for (j = i; j < LongBar; j++) { // compute from i to LongBar - 1, like Burg tell it (!!! on Numerical Recipes it is computed from 1 to LongBar - i !!!) Num = Num + Wi[j]*( f[j]*b[j-1] ); Den = Den + Wi[j]*( f[j]^2 + b[j-1]^2 ); } k[i] = 2*Num/Den; // k is reflection coefficient, a is AR coefficient */ /* --- END OF EXPERIMENTAL PART --- */ /* -------------------------------------------------------------------------------------------------------------------------------------------- */ // If you wish Double Precision, VBS script must be used (result are more precise than SUM or FOR loop, but computation is a lot more slower) if (DoublePrecision == 1) { // double precision KI_VBS = GetScriptObject (); KI = KI_VBS.Compute_KI(f, b, Wi, i, LongBar); k[i] = KI; } noise_variance[i] = (1 - k[i]^2)*noise_variance[i-1]; // update noise variance estimator if (AutoOrder == 1) { // Compute criterions for order AR selection FPE[i] = noise_variance[i]*(LongBar + (i + 1))/(LongBar - (i + 1)); // Final Prediction Error AIC[i] = log (noise_variance[i])+2*i/LongBar; // Akaine Information Criterion MDL[i] = log (noise_variance[i]) + i* log (LongBar)/LongBar; // Minimum Description Length CAT_factor = CAT_factor + (LongBar - i)/(LongBar*noise_variance[i]); CAT[i] = CAT_factor/LongBar - (LongBar - i)/(LongBar*noise_variance[i]); // Criterion Autoregressive Transfer CIC_product = CIC_product * (1 + 1/(LongBar + 1 - i))/(1 - 1/(LongBar + 1 - i)); CIC_add = CIC_add + (1 + 1/(LongBar + 1 - i)); CIC[i] = log (noise_variance[i]) + Max (CIC_product - 1,3*CIC_add); // Combined Information Criterion } // Update all AR coefficients for (j = 1; j < i; j++) a[j] = a_old[j] - k[i]*a_old[i-j]; a[i] = k[i]; // Store them for next iteration a_old = a; // Update forward and backward reflection coefficients f_temp = f - k[i]*b_shifted; b = b_shifted - k[i]*f; f = f_temp; // End of the main loop } if (AutoOrder == 1) { // Clean data because of rounding number for very low or very high value, and discard small changes FPE = IIf ( abs ( LinRegSlope (FPE, 2)/FPE[1]) < 0.005 OR abs (FPE) > 1e7, -1e10, FPE); AIC = IIf ( log ( abs ( LinRegSlope (AIC, 2)/AIC[1])) < 0.005 OR abs (AIC) > 1e7, -1e10, AIC); MDL = IIf ( log ( abs ( LinRegSlope (MDL, 2)/MDL[1])) < 0.005 OR abs (MDL) > 1e7, -1e10, MDL); CAT = IIf ( log ( abs ( LinRegSlope (CAT, 2)/CAT[1])) < 0.005 OR abs (CAT) > 1e7, -1e10, CAT); CIC = IIf ( abs ( LinRegSlope (CIC, 2)/CIC[1]) < 0.005 OR abs (CIC) > 1e7, -1e10, CIC); // Find lower value Mixed_Order = 0; FPE_Order = Mixed_Order[1] = LastValue ( Max ( ValueWhen (FPE == Lowest (FPE) AND IsFinite (FPE), Cum (1), 1) - 1, 2)); AIC_Order = Mixed_Order[2] = LastValue ( Max ( ValueWhen (AIC == Lowest (AIC) AND IsFinite (AIC), Cum (1), 1) - 1, 2)); MDL_Order = Mixed_Order[3] = LastValue ( Max ( ValueWhen (MDL == Lowest (MDL) AND IsFinite (MDL), Cum (1), 1) - 1, 2)); CAT_Order = Mixed_Order[4] = LastValue ( Max ( ValueWhen (CAT == Lowest (CAT) AND IsFinite (CAT), Cum (1), 1) - 1, 2)); CIC_Order = Mixed_Order[5] = LastValue ( Max ( ValueWhen (CIC == Lowest (CIC) AND IsFinite (CIC), Cum (1), 1) - 1, 2)); // Mixed array is an averaging from all criterions taking in consideration order choose by criterions is often too low Mixed_Order_array = Median (Mixed_Order, 5); Mixed_Order = 2* ceil (Mixed_Order_array[5]); // Print informations about best order for each criterion printf ( "\nFPE Order : " +FPE_Order); printf ( "\nAIC Order : " +AIC_Order); printf ( "\nMDL Order : " +MDL_Order); printf ( "\nCAT Order : " +CAT_Order); printf ( "\nCIC Order : " +CIC_Order); printf ( "\n*** Mixed Order *** : " +Mixed_Order); // Mark best order in a[1] wich is returned at the end of the function if (AutoOrder_Criterion == "FPE" ) a[1] = FPE_Order; if (AutoOrder_Criterion == "AIC" ) a[1] = AIC_Order; if (AutoOrder_Criterion == "MDL" ) a[1] = MDL_Order; if (AutoOrder_Criterion == "CAT" ) a[1] = CAT_Order; if (AutoOrder_Criterion == "CIC (good)" ) a[1] = CIC_Order; if (AutoOrder_Criterion == "Mixed (best)" ) a[1] = Mixed_Order; } // End of the function, return AR coefficients and noise variance estimator for the current selected order in a[0] a = IIf (BI > OrderAR, -1e10, a); a[0] = noise_variance[i-1]; // usefull for AR_Pred and AR_Freq return a; } function AR_Predict(data, AR_Coeff, EndBar, ExtraF) { BI = BarIndex (); OrderAR = LastValue ( BarCount - BarsSince (AR_Coeff) - 1); // Print some informations about AR coefficients and noise variance sum_coeffs = Cum (AR_Coeff) - AR_Coeff[0]; // ARCoeff[0] store noise_variance printf ( "\n\nNoise Variance Estimator : " + NumToStr ( abs (AR_Coeff[0]), 1.9)); printf ( "\n\nSum of AR coeffs : " + NumToStr (sum_coeffs[OrderAR], 1.9)); for (i = 1; i < OrderAR + 1; i++) printf ( "\nCoeff AR " + NumToStr (i, 1.0) + " = " + NumToStr (AR_Coeff[i], 1.9)); // Pass the data into the AR filter data_predict = IIf (BI > EndBar, -1e10, Data); // clear data after EndBar for (i = Endbar + 1; i < EndBar + ExtraF + 1; i++) { data_predict[i] = 0; for (j = 1; j < OrderAR + 1; j++) data_predict[i] = data_predict[i] + AR_Coeff[j] * data_predict[i-j]; } /* -------------------------------------------------------------------------------------------------------------------------------------------- */ /* --- PART JUST BELOW IS ONLY IF YOU NEED RESIDUALS "u" FROM FILTERING PROCESS OR TO COMPARE IT WITH THE NOISE VARIANCE ESTIMATOR --- */ /* global BegBar; data_predict = IIf(BI > EndBar, -1e10, Data); for (i = BegBar + OrderAR; i < EndBar + 1 + ExtraF; i++) { data_predict[i] = 0; for (j = 1; j < OrderAR + 1; j++) { data_predict[i] = data_predict[i] + AR_Coeff[j] * data_predict[i-j]; } if (i > EndBar) u[i] = 0; else u[i] = data[i] - data_predict[i]; data_predict[i] = data_predict[i] + u[i]; } global noise_variance_filterburg; noise_variance_filterburg = StDev(u, EndBar - (BegBar + OrderAR) + 1); noise_variance_filterburg = noise_variance_filterburg[EndBar]^2; printf( "\n\nNoise variance from filtering process : " + NumToStr(noise_variance_filterburg, 1.9)); */ /* --- END OF RESIDUAL COMPUTATION PART --- */ /* -------------------------------------------------------------------------------------------------------------------------------------------- */ // Return data and data predicted from (EndBar + 1) to (EndBar + ExtraF) return data_predict; } function AR_Freq(AR_Coeff, step) { BI = BarIndex (); pi2 = atan (1) * 8; OrderAR = LastValue ( BarCount - BarsSince (AR_Coeff) - 1); AR_Coeff=-AR_Coeff; noise_variance = abs (AR_Coeff[0]); if (noise_variance == 0) noise_variance = 0.000001; //seven-th digit to one S = -1e10; // usefull to determine the number of data for AR_Sin function f = Cum (1); f = Ref (f,-1); f[0] = 0; f = IIf (BI > 0.5/step, -1e10, f); f = step*f; // Danielson-Lanczos algorithm to fast compute exponential complex multiplication, using vector formulation AFL for multiple frequency in one-time recursion W_cos = cos (pi2*f); W_sin = sin (pi2*f); // initialize cos and sinus constant for each frequency f W_Re = 1; W_Im = 0; // initialize for recursion real and imaginary weight for AR coeffs Re = 1; Im = 0; // initialize real and imaginary part of the denominator from the spectrum function for (j = 1; j < OrderAR + 1; j++) { W_Re_temp = W_Re; // Begin Danielson-Lanczos part W_Re = W_Re*W_cos - W_Im*W_sin; W_Im = W_Im*W_cos + W_Re_temp*W_sin; // End Danielson-Lanczos part Re = Re + AR_Coeff[j]*W_Re; // real part of the denominator Im = Im + AR_Coeff[j]*W_Im; // imaginary part of the denominator } /* Just for experimentation about speed between classic and Danielson-Lanczos algorithm, here is basic computation */ //Re = 1; Im = 0; //for (j = 1; j < OrderAR + 1; j++) { Re = Re + AR_Coeff[j]*cos(pi2*f*j); Im = Im + AR_Coeff[j]*sin(pi2*f*j); } S = noise_variance/(Re^2+Im^2); // S the spectrum function Sdb = 10* log10 ( abs (s/noise_variance)); // Sdb the spectrum function in dB (power) with noise_variance as reference (so if Sdb is negative, power at this frequency is less than noise power) return Sdb; } function AR_Sin(S, nb_sinus) { // Initialization nb_data = LastValue ( BarCount - BarsSince (S)); step = 0.5/nb_data; // Process data to keep only signifiant peaks slope = LinRegSlope (S,2); // derivation peaks = Ref ( Cross (0, slope), 1); // find maximums of the spectrum value_peaks = IIf (peaks == 1 AND S > 0, S, 0); // erase maximum wich have less power than the noise // Find the reduced frequency of the most powerfull cycles sinus = -1e10; sinus[0] = 0; // to detect error or no cycle for (i = 0; i < nb_sinus; i++) { // save nb_sinus dominant cycles sinus[i] = BarCount - LastValue ( HighestBars (value_peaks)) - 1; // save higher peak position value_peaks[sinus[i]] = 0; // erase new detected peak for next iteration } sinus = 1/(sinus*step); // convert reduced frequency in periods sinus[0] = Nz (sinus[0]); // no cycle found return sinus; } /* ---------------------------------------------------------------------- */ /* -------------------------------- DEMO -------------------------------- */ /* ---------------------------------------------------------------------- */ // Choice of the parameters empty = ParamList ( "Main parameters" , "" , 0); data_source = ParamField ( "Price field" ,-1); ARmodel = ParamList ( "AR Model" , "Burg (best)|Yule-Walker" , 0); length = Param ( "Length to look back" , 200, 1, 5000, 1); OrderAR = Param ( "Order AR" , 20, 0, 100, 1); ExtraF = Param ( "Number of bar to predict" , 50, 0, 200, 1); AutoOrder = ParamToggle ( "Auto AR order" , "No|Yes" , 0); AutoOrder_Criterion = ParamList ( "Auto AR criterion" , "FPE|AIC|MDL|CAT|CIC (good)|Mixed (best)" , 5); HammingWindow = ParamToggle ( "Burg: Hamming Window" , "No|Yes" , 1); DoublePrecision = ParamToggle ( "Burg: Double Precision" , "No|Yes" , 0); Biased = ParamToggle ( "Y-W: Biased (Yes: best)" , "No|Yes" , 1); empty = ParamList ( "*** PRE-PROCESSING : ***" , "" , 0); empty = ParamList ( "1- Intraday EOD GAP Filter" , "" , 0); FiltrageGAPEOD = ParamToggle ( "Filtrage GAP EOD" , "No|Yes" , 0); empty = ParamList ( "2- Denoise" , "" , 0); periodsT3 = Param ( "Periods T3" , 5, 1, 200, 1); slopeT3 = Param ( "Slope T3" , 0.7, 0, 3, 0.01); empty = ParamList ( "3- Detrend" , "" , 0); method_detrend = ParamList ( "Detrending method" , "None|Log10|Derivation|Linear Regression|PolyFit" , 3); PF_order = Param ( "PolyFit Order" , 3, 1, 9, 1); empty = ParamList ( "4- Center" , "" , 0); PreCenter = ParamToggle ( "Center data" , "No|Yes" , 1); empty = ParamList ( "5- Normalize" , "" , 0); PreNormalise = ParamToggle ( "Normalise data" , "No|Yes" , 1); empty = ParamList ( "6- Volume weight on data" , "" , 0); PonderVolHL = ParamToggle ( "Weighting Volume and H/L(Fractal)" , "No|Yes" , 0); coef_vol = Param ( "Strength Volume (- +)" , 0.5, 0.01, 0.99, 0.01); coefdim = Param ( "Strength Fractal (- +)" , 0.5, 0.01, 0.99, 0.01); period = Param ( "Periods Fract (even)" , 16, 2, 200, 2); scale = Param ( "Scale Final Weights" , 1, 0, 10, 0.01); translation = Param ( "Translate Final Weights" , 0.3, 0, 1, 0.01); empty = ParamList ( "7- Time weight on data" , "" , 0); PonderTime = ParamToggle ( "Weighting Time" , "No|Yes" , 0); PonderTimeWindow = ParamList ( "Weighting Time Window" , "Log|Ramp|Exp" , 0); empty = ParamList ( "*** POST-PROCESSING : ***" , "" , 0); method_retrend = ParamList ( "Retrending method" , "Add back trend|Prediction without trend" , 0); empty = ParamList ( "For Derivation or Log10 :" , "add automatically the trend" , 0); // Initialization SetBarsRequired (20000,20000); Title = "" ; BI = BarIndex (); current_pos = SelectedValue ( BI ) - BI[ 0 ]; //1500 printf ( "Position: " + NumToStr (current_pos) + "\n" ); // Adjust users choice depending number of bars data available or detrending/retrending necessity for derivation method if ( method_retrend == "Prediction without trend" AND (method_detrend == "Derivation" OR method_detrend == "Log10" ) ) method_retrend = "Add back trend" ; BegBar = current_pos - length + 1; slide = floor (periodsT3/2); if (BegBar < 6*periodsT3) Title = Title + "\n\n\n\n\n\n!!! WARNING : YOU HAVE NOT ENOUGH DATA HISTORY FOR CORRECT T3 FILTERING - Reduce \"Periods T3\" parameter OR move Position Bar !!!\n\n\n\n\n\n" ; if (BegBar < 1) { BegBar = 1; length = current_pos - slide; Title = Title + "\n\n\n\n\n\n!!! WARNING : YOU HAVE NOT ENOUGH DATA HISTORY - Reduce \"Length to look back\" parameter OR move Position Bar !!!\n\n\n\n\n\n" ; } EndBar = current_pos - slide; if ( EndBar + ExtraF > BarCount - 1) { ExtraF = ( BarCount - 1) - EndBar; } if (AutoOrder == 1) OrderAR = floor (length / 2); if (OrderAR >= length) { OrderAR = length - 1; Title = Title + "\n\n\n\n\n\n!!! WARNING : ORDER AR IS MORE HIGH THAN (LENGTH TO LOOK BACK - 1) - Reduce \"Order AR\" OR increase \"Length to look back\" parameters !!!\n\n\n\n\n\n" ; } data = data_source; data_filtred = f_centeredT3(data, periodsT3, slopeT3); /* -------------------- BEGIN PROCESSING -------------------- */ // Filter GAP End of the days - only needed for intraday if (FiltrageGAPEOD == 1) data = Filter_GAP_EOD(data); // Denoise data data = f_centeredT3(data, periodsT3, slopeT3); // Detrend data if (method_detrend != "None" ) data = f_detrend(data, BegBar, EndBar, ExtraF, method_detrend, PF_order); data = IIf (BI < BegBar, 0, data); // fill with 0 before BegBar to be able to compute native MA Function AFL // Center data mean_data_before = MA (data, EndBar - BegBar + 1); printf ( "\nMean data not centered : " + WriteVal (mean_data_before[EndBar]) + "\n" ); if (PreCenter == 1) { data = data - mean_data_before[EndBar]; mean_data_after = MA (data, EndBar - BegBar + 1); printf ( "\nMean data centered : " + WriteVal (mean_data_after[EndBar]) + "\n\n" ); } // Normalize data if (PreNormalise == 1) { max_data = HHV (data, EndBar - BegBar + 1); data = data / max_data[EndBar]; } // Weigthing only for the data which will feed the AR_Burg function (modeling AR), not the AR_Pred function (prediction) data_weighted = data; // Volume and High/Low (Fractal) weighting if (PonderVolHL == 1) data_weighted = Volume_HighLow_weighting(data_weighted, coef_vol, coefdim, period, scale, translation); // Time weighting if (PonderTime == 1) data_weighted = Time_weighting(data_weighted, PonderTimeWindow, BegBar, EndBar); // Compute AR model if (ARmodel == "Burg (best)" ) { // Burg model (MEM method) (better than Yule-Walker for sharp spectrum and short data history) AR_Coeff = AR_Burg(data_weighted, BegBar, EndBar, OrderAR, HammingWindow, AutoOrder, AutoOrder_Criterion, DoublePrecision); if (AutoOrder == 1) { // In case of AutoOrder, a new computation to find coefficients with the ideal order is needed OrderAR = AR_Coeff[1]; AR_Coeff = AR_Burg(data_weighted, BegBar, EndBar, OrderAR, HammingWindow, 0, AutoOrder_Criterion, DoublePrecision); // Compute the AR from AutoOrder } } if (ARmodel == "Yule-Walker" ) { // Yule-Walker model (Autocorrelation method) AR_Coeff = AR_YuleWalker(data_weighted, BegBar, EndBar, OrderAR, Biased, AutoOrder, AutoOrder_Criterion); if (AutoOrder == 1) { // In case of AutoOrder, a new computation to find coefficients with the ideal order is needed OrderAR = AR_Coeff[1]; AR_Coeff = AR_YuleWalker(data_weighted, BegBar, EndBar, OrderAR, Biased, 0, AutoOrder_Criterion); // Compute the AR from AutoOrder } } noise_variance = abs (AR_Coeff[0]); // Prediction based on the computed AR model data_predict = AR_Predict(data, AR_Coeff, EndBar, ExtraF); // De-normalize if (PreNormalise == 1) { data_predict = data_predict * max_data[EndBar]; noise_variance = noise_variance * max_data[EndBar]; } // De-center if (PreCenter == 1) data_predict = data_predict + mean_data_before[EndBar]; // Add the trend back again if (method_detrend != "None" AND method_retrend == "Add back trend" ) data_predict = f_retrend(data_predict, data_filtred[EndBar], EndBar, EndBar + ExtraF, method_detrend); // Translate along value axis filtered EOD GAP data or not retrended data, so no gap occurs if (FiltrageGAPEOD == 1 OR method_retrend == "Prediction without trend" ) { delta = data_predict[EndBar + 1] - data_filtred[EndBar]; data_predict = data_predict - delta; data_predict = Ref (data_predict, 1); // so there is no discontinuity (but there is one data less for forward prediction) } // Plot AR Prediction and Burg predicted channels based on ATR and noise variance (if prediction is bad, channel will be larger) dataATR = ATR (periodsT3); // no need to detrend or center ATR before prediction (considerer centred without any trend) printf ( "\n\nATR AR model for Channel prediction :\n" ); AR_Coeff_ATR = AR_Burg(dataATR, BegBar, EndBar, OrderAR, HammingWindow, OrderAR, AutoOrder_Criterion, DoublePrecision); data_predict_ATR = AR_Predict(dataATR, AR_Coeff_ATR, EndBar, ExtraF); DeltaBand = 2*(data_predict_ATR + noise_variance); Data_reconstruct = -1e10; Data_reconstruct = IIf ( BI <= EndBar AND BI >= BegBar, data_filtred, IIf ( BI > EndBar, data_predict, Data_reconstruct)); Plot (Data_reconstruct, "AR(" + NumToStr (OrderAR, 1.0) + ") Prediction" , IIf (BI > EndBar + slide, colorRed , IIf (BI > EndBar AND BI <= EndBar + slide, colorBlue , colorBrightGreen )), styleThick , Null , Null , 0); Plot (Data_reconstruct + DeltaBand, "AR(" + NumToStr (OrderAR, 1.0) + ") Prediction Upper Channel" , IIf (BI > EndBar + slide, colorRed , IIf (BI > EndBar AND BI <= EndBar + slide, colorBlue , colorBrightGreen )), styleDashed , Null , Null , 0); Plot (Data_reconstruct - DeltaBand, "AR(" + NumToStr (OrderAR, 1.0) + ") Prediction Lower Channel" , IIf (BI > EndBar + slide, colorRed , IIf (BI > EndBar AND BI <= EndBar + slide, colorBlue , colorBrightGreen )), styleDashed , Null , Null , 0); /* -------------------------------------------------------------------------------------- */ /* Demo for density spectrum power (DSP) analyse based on AR modeling (parametric method) */ // Compute spectrum based directly on AR model. Decomment following line to plot spectrum begining in first Bar (Bar[0]) Sdb = AR_Freq(AR_Coeff, 0.001); // 0.001 is the step for frequency resolution //Plot( Sdb, "Spectrum in decibels", ParamColor( "Color Spectrum in decibels", colorCycle ), ParamStyle("Style") ); // Look for the frequency which are the more powerfull (dominant cycles) sinus = AR_Sin(Sdb, 10); // 10 is the maximum number of frequency to look for Title = Title + "\nDominant periods: " + WriteIf (sinus[0] >= 0 AND IsFinite (sinus[0]), NumToStr ( round (sinus[0]),1.0), "" ); for (i = 1; i < 10; i++) Title = Title + WriteIf (sinus[i] > 0 AND IsFinite (sinus[i]), ", " + NumToStr ( round (sinus[i]),1.0), "" ); /* End DSP demo - For more information look for MEM or MESA */ /* -------------------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ /* ------------------------------- END DEMO ----------------------------- */ /* ---------------------------------------------------------------------- */ _SECTION_END (); |
2 comments
Leave Comment
Please login here to leave a comment.
Back
there is no prediction
What’s made it called “Prediction”? Any price future prediction?