Stock Portfolio Organizer
The ultimate porfolio management solution.
Shares, Margin, CFD's, Futures and Forex
EOD and Realtime
Dividends and Trust Distributions
And Much More ....
WiseTrader Toolbox
#1 Selling Amibroker Plugin featuring:
Advanced Adaptive Indicators
Advanced Pattern Exploration
Neural Networks
And Much More ....
Tomy Frenchy for Amibroker (AFL)
Rating:
5 / 5 (Votes 1)
Tags:
Prediction AR (Auto-regressive)
- With Least Square / Durbin-Levinson / Gaussian Elimination
- Autocorrelation function estimator biased and not biased
- Denoising by centered T3 moving average
- Detrending by derivation
Screenshots
Indicator / Formula
Copy & Paste Friendly
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | _SECTION_BEGIN ( "tomy_frenchy" ); //------------------------------------------------------------------------------ // // Author/Uploader: tomy_frenchy - tom_borgo [at] hotmail.com //------------------------------------------------------------------------------ // // Prediction AR (Auto-regressive) // // - With Least Square / Durbin-Levinson / Gaussian Elimination // // - Autocorrelation function estimator biased and not biased // // - Denoising by centered T3 moving average // // - Detrending by derivation // // TO DO: // // - some problem of stability // // - check optimum order for AR // // - check correlation of residual to confirm the model // // - PFE, Ramset, etc test for AR modeling efficiency // // - maybe ARMA will be better ? // //------------------------------------------------------------------------------ // ********************************************************* // * // * Prediction with model AR by Least Square / Autocorrelation // * - Native AFL and VBS (for Gaussian Elimination if selected) // * - biased or not biased estimator depending volatility // * - averaging by T3 zerolag // * - detrend by derivation // * // * - tomy_frenchy, v0.1 // * - fred for VBS Gaussian Elimination. Thanks a lot. // * // ********************************************************* // ********************************************************* // * // * Price field = Data to predict // * Periods = Periods for T3 filtering // * Slope = Slope for T3 filtering (0.7 to 0.83 for usual value) // * Methode = 0: Durbin-Levinson, 1: Gaussian Elimination // * Order = Order of AR model // * ExtraF = Number of Bars to Extrapolate Forward // * // ********************************************************* // ********************************************************* // * // * Plotting : // * The bar position on the graphics separe in/out samples // * Green: computed from current data (centered T3 moving average) // * Blue: predicted, in-sample (AR, for the bar delayed because of T3 MA) // * Red: predicted, out-sample (AR, pure prediction) // * // ********************************************************* // For a resolution with Gaussian Elimination (more stable than Levinson-Durbin but slower) EnableScript ( "VBScript" ); <% function Gaussian_Elimination (OrderAR, Autocorr) Dim b(200, 200) Dim w(200) Dim Coeff(200) for i = 1 To 200 Coeff(i) = 0 next n = OrderAR for i = 1 to n for j = 1 to n b(i, j) = cDbl(Autocorr( abs (j - i))) next w(i) = cDbl(Autocorr(i)) next n1 = n - 1 for i = 1 to n1 big = cDbl( abs (b(i, i))) q = i i1 = i + 1 for j = i1 to n ab = cDbl( abs (b(j, i))) if (ab >= big) then big = ab q = j end if next if (big <> 0.0) then if (q <> i) then for j = 1 to n Temp = cDbl(b(q, j)) b(q, j) = b(i, j) b(i, j) = Temp next Temp = w(i) w(i) = w(q) w(q) = Temp end if end if for j = i1 to n t = cDbl(b(j, i) / b(i, i)) for k = i1 to n b(j, k) = b(j, k) - t * b(i, k) next w(j) = w(j) - t * w(i) next next if (b(n, n) <> 0.0) then Coeff(n) = w(n) / b(n, n) i = n - 1 while i > 0 SumY = cDbl(0) i1 = i + 1 for j = i1 to n SumY = SumY + b(i, j) * Coeff(j) next Coeff(i) = (w(i) - SumY) / b(i, i) i = i - 1 wend Gaussian_Elimination = Coeff end if end function %> function T3(price,periods,s) { e1= EMA (price,periods); e2= EMA (e1,Periods); e3= EMA (e2,Periods); e4= EMA (e3,Periods); e5= EMA (e4,Periods); e6= EMA (e5,Periods); c1=-s*s*s; c2=3*s*s+3*s*s*s; c3=-6*s*s-3*s-3*s*s*s; c4=1+3*s+s*s*s+3*s*s; Ti3=c1*e6+c2*e5+c3*e4+c4*e3; return ti3; } function f_centeredT3(data) { global slide; periods = Param ( "Periods" , 5, 1, 200, 1); slope = Param ( "Slope" , 0.7, 0, 3, 0.01); slide = floor (periods/2); centeredT3 = data; centeredT3 = Ref (T3(data,periods,slope),slide); centeredT3 = IIf ( IsNan (centeredT3) OR ! IsFinite (centeredT3) OR IsNull (centeredT3), data, centeredT3); return centeredT3; } function f_detrend(data) { detrended[0]=0; for (i = 1; i < BarCount ; i++) detrended[i] = data[i] - data[i-1]; return detrended; } function f_retrend(data, first_value, first_index, last_index) { for (i = 0; i < first_index; i++) retrended[i] = -1e10; retrended[first_index]=first_value; for (i = first_index + 1; i < last_index + 1; i++) retrended[i] = data[i] + retrended[i-1]; for (i = last_index + 1; i < BarCount ; i++) retrended[i] = -1e10; return retrended; } function AR(Data, BegBar, EndBar, OrderAR, ExtraF, Methode) { BI = BarIndex (); Data_all = Data; Data = IIf (BI < BegBar, 0, IIf (BI > EndBar, 0, Data)); LongBar = EndBar - BegBar + 1; // Calcul for autocorrelation function temp = MA (Data,LongBar); moy_data = temp[EndBar]; data_centred = Data - moy_data; for (i = 0; i < OrderAR + 1; i++) { temp = 0; for (j = BegBar; j < EndBar + 1 - i; j++) { temp = temp + data_centred[j]*data_centred[j+i]; } //Autocorr[i]=(1/(LongBar))*temp; //biased estimator, small variance Autocorr[i]=(1/(LongBar-i))*temp; //not biased estimator, strong variance } Autocorr=Autocorr/Autocorr[0]; Gaussian_Elimination = Methode; // 0: Durbin-Levison, 1: Gaussian Elimination if ( Gaussian_Elimination == 1 ) { // Calcul AR parameters with Gaussian Elimination (vbs, more stable and precise, but slower) VBS = GetScriptObject (); AR_Coeff = VBS.Gaussian_Elimination(OrderAR, Autocorr); } else { // Calcul AR parameters with Durbin-Levison algorythm for Toeplitz matrix // initialisation : AR_Coeff = 0; alpha[1] = Autocorr[0]; beta[1] = Autocorr[1]; k[1] = Autocorr[1] / Autocorr[0]; AR_Coeff[1] = k[1]; // itertive calcul : for (n = 1; n < OrderAR; n++) { // Last coefficient calcul // Step 1 : invert Coeff array for (i = 1; i < n + 1; i++) AR_Coeff_inv[n+1-i] = AR_Coeff[i]; // Step 2 temp = 0; for (i = 1; i < n + 1; i++) temp = temp + Autocorr[i] * AR_Coeff_inv[i]; beta[n+1] = Autocorr[n+1] - temp; // Step 3 alpha[n+1] = alpha[n] * (1 - k[n]*k[n]); // Step 4 k[n+1] = beta[n+1] / alpha[n+1]; AR_Coeff[n+1] = k[n+1]; // Other older coefficients calcul // Step 5 for (i = 1; i < n + 1; i++) New_AR_Coeff[i] = AR_Coeff[i] - k[n+1] * AR_Coeff_inv[i]; // Step 6 New_AR_Coeff[n+1] = AR_Coeff[n+1]; // Update AR_Coeff = New_AR_Coeff; } } // Prediction to +1 : //Data = Data * Data_max; AR_data = 0; for (i = 1; i < OrderAR + 1; i++) { AR_data = AR_data + AR_Coeff[i] * Ref (Data,-i); printf ( "Coeff AR " + NumToStr (i, 1.0) + " = " + NumToStr (AR_Coeff[i], 1.9) + "\n" ); } AR_data = IIf (BI < BegBar, -1e10, IIf (BI > EndBar, -1e10, AR_data)); // Prédiction to +Forward AR_data_pred = IIf (BI > EndBar, -1e10, Data); // to be sure not to compute future value for (i = EndBar + 1; i < EndBar + 1 + ExtraF; i++) { temp = 0; for (j = 1; j < OrderAR + 1; j++) { temp = temp + AR_Coeff[j] * AR_data_pred[i-j]; } AR_data_pred[i] = temp; } for (i = EndBar + 1; i < EndBar + 1 + ExtraF; i++) { AR_data[i] = AR_data_pred[i]; } // End return AR_data; } // ********************************************************* // * // * Demo AFL to use AR Prediction // * // ********************************************************* SetBarsRequired (20000,20000); BI = BarIndex (); current_pos = SelectedValue ( BI ) - BI[ 0 ]; printf ( "Position: " + WriteVal (current_pos) + "\n" ); // Denoising and detrending for stationnarity data_source = ParamField ( "Price field" ,-1); centeredT3 = f_centeredT3(data_source); data = f_detrend(centeredT3); // Choice of parameters Methode = Param ( "Methode 0:DL, 1:GE" , 0, 0, 1, 1); longueur = Param ( "Longueur" , 200, 1, 5000, 1); OrderAR = Param ( "nth Order AR" , 2, 1, 50, 1); ExtraF = Param ( "Extrapolate Forwards" , 0, 0, 50, 1); BegBar = current_pos - longueur - slide; EndBar = current_pos - slide; // Prediction calcul AR_pred = AR(data, BegBar, EndBar, OrderAR, ExtraF, Methode); AR_pred = f_retrend(AR_pred, centeredT3[EndBar], EndBar, EndBar + slide + ExtraF); // Reconstruct data + prediction Data_reconstruct = -1e10; Data_reconstruct = IIf ( BI <= EndBar AND BI >= BegBar, centeredT3, AR_pred); // Plot result Plot (Data_reconstruct, "AR Prediction - " + NumToStr (OrderAR, 1.0), IIf (BI > EndBar + slide, colorRed , IIf (BI > EndBar AND BI <= EndBar + slide, colorBlue , colorBrightGreen )), styleThick , Null , Null , 0); _SECTION_END (); |
1 comments
Leave Comment
Please login here to leave a comment.
Back
Gentlemen,
There is error in these lines :
for (i = 0; i < OrderAR + 1; i++) {
temp = 0;
for (j = BegBar; j < EndBar + 1 – i; j++) {
temp = temp + data_centred[j]*data_centred[j+i];
Error 10: Array subscript out of range. You must not access array elements outside 0. (BarCount-1) range. You attempted to access non-existing -3rd element of array.
I am not a coding guy, thought can do basic coding… but this is far beyond my current reach of knowledge, so any help would be greatly appreciated.
Warm Regards
FF